The calculations were performed on the computer of the Centro Calcoli e Servomeccanismi della Università di Bologna with financial support from Consiglio Nazionale delle Ricerche. The programmes were obtained through the courtesy of Dr L. H. Jensen and Prof. G. A. Jeffrey. It is a pleasure to thank all these people and Prof. L. Cavalca for his valuable interest.

References

- ABRAHAMS, S. C. (1954). Acta Cryst. 7, 423.
- Abrahams, S. C. & Kalnajs, J. (1954). Acta Cryst. 7, 838.
- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- BROWN, B. W., LINGAFELTER, F. C., STEWART, J. M. & JENSEN, L. H. (1959). Acta Cryst. 12, 350.
- CAVALCA, L., NARDELLI, M. & BRAIBANTI, A. (1956). Ric. Sci. 26, 1881.
- CHACKRABURTTY, D. M. (1957). Acta Cryst. 10, 199.
- CLARKE, F. W. (1877). Amer. J. Sci. [3], 14, 283.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- GOLDSCHMIDT, V. M. (1927). Geochemische Verteilungsgesetze der Elemente VIII. Oslo: Dybwad.

- mputer Нопло, G. & Sнімаока, K. (1957). Acta Cryst. 10, 710.
 - MANI, N. V. & RAMASESHAN, S. (1960). Z. Kristallogr. 114, 200.
 - NARDELLI, M., FAVA, G. & GIRALDI, G. (1962). Acta Cryst. 15, 227.
 - NEWNHAM, R. E. & MEGAW, H. D. (1960). Acta Cryst. 13, 303.
 - PABST, A. (1943). Amer. Min. 28, 372.
 - PAULING, L. (1935). J. Amer. Chem. Soc. 57, 2680.
 - PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
 - PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
 - Sándor, E. & Csordás, L. (1961). Acta Cryst. 14, 237. Schnering, H. G. von, Hoppe, R. & Zemann, J. (1960).
 - Z. anorg. Chem. 305, 241. SHIONO, R. (1957). Technical Report No. 2, University
 - of Pittsburg, Computation and Data Processing Center. SHIONO, R. (1959). *Technical Report* No. 9, University
 - of Pittsburg, Computation and Data Processing Center.
 - SUGAWARA, T., KAKUDO, M., SAITO, Y. & NITTA, I. (1951). X-Rays (Osaka University), 6, 85.
 - TAYLOR, P. G. & BEEVERS, C. A. (1952). Acta Cryst. 5, 341.
 - THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
 - VOUSDEN, P. (1956). Acta Cryst. 9, 141.
 - WIEBENGA, E. H. & SMITS, D. W. (1950). Acta Cryst. 3, 265.
 - YOSHIKI, B. & MATSUMOTO, K. (1951). J. Amer. Ceram. Soc. 34, 283.
 - ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 263.

Acta Cryst. (1962). 15, 484

The Structure of Salamander Alkaloids. I. On the Structure of Samandarine-Hydrobromide

BY G. WEITZ AND E. WÖLFEL

Eduard-Zintl-Institut, Technische Hochschule Darmstadt, Darmstadt, Germany

(Received 19 May 1961)

Samandarine $C_{19}H_{31}O_2N$ and the related compounds are the only genuine alkaloids so far known in animals. X-ray analysis shows that the sterol skeleton of samandarine is related to 5β -androstane. The oxazolidine ring as deduced by chemical methods has been confirmed.

The X-ray analysis has been mainly carried out on the hydrobromide with space group $P2_1$,

$$a = 12.98, b = 6.28, c = 12.43$$
 Å; $\beta = 95^{\circ}$.

There are 2 molecules and 2 methanols in the unit cell. The heavy atom was found from Patterson projections. The heavy-atom technique was used to derive signs, and several 2-dimensional syntheses were calculated until the R_1 -factor for the hol reflections reached 0.28. A 3-dimensional model of the molecule has been found and two 3-dimensional Fourier-syntheses were calculated. The R_1 -factor reached 0.25 including unobserved reflections. The least-squares refinement was calculated using the program of Levy & Busing for the IBM 704. For the 3-dimensional intensities the final R_1 -factor reached $R_1 = 0.17$ including unobserved reflections.

Introduction

The miliary glands of the salamander species 'Salamandra maculosa' and 'Salamandra atra Laur' contain a secretion which has been studied by C. Schöpf and his co-workers. The main part of this secretion consists of proteins and water and only a small fraction of about 10% is a mixture of various alkaloids. Samandarine has been found to be the main alkaloid (60%); in addition Samandaron (10%), Samandaridine (5%), Cyclo-Neosamandion and several others have been isolated. The structures of these compounds are of interest, because they represent the only genuine alkaloids so far known in animals.

The formula of samandarine was determined by Schöpf & Braun (1934) to be $C_{19}H_{31}O_2N$. No double bonds were found. It has been shown that one oxygen belongs to an alcoholic OH-group

whereas the other one is an ether-oxygen. It was later confirmed (Schöpf, Blödorn, Klein & Seitz, 1950) that the ether-oxygen and the nitrogen belong to a 5-membered oxazolidin ring system which itself belongs to a 7-membered ring A (see Fig. 1).

Fig. 1. A sketch of the samandarine molecule. The numbers refer to the carbons and are due to the nomenclature of the steroids.

The carbon skeleton has been elucidated by dehydrogenation of samandarine. A mixture of various derivatives of naphthalene was obtained. A spectroscopical investigation showed that these compounds were substituted in the 1,2,5 and 6-position. From the sum formula a carbon skeleton of two 6-membered rings *B* and *C*, one 5-membered ring *D* and 2 angular CH₃-groups was derived (Schöpf & Klein, 1954).

There was an ambiguity in the attachment of ring A to the carbon skeleton of the molecule. One of three possible structures, which has been confirmed by our X-ray structure analysis, is shown in Fig. 1. The chemical analysis made it plausible to try to relate the structure of samandarine to the structure of known steroids e.g. to cholesterol or to 5β -androstane. Since chemical methods did not lead to straightforward results, mainly because only small quantities of these substances were available, it was decided to start an X-ray structure analysis of samandarine and related compounds in addition to further chemical and spectroscopical investigations (Wölfel, Schöpf, Weitz & Habermehl, 1961).

Crystal data

After a few trials, the unstable monoclinic modifica-

tions of samandarine-hydrochloride, -hydrobromide, and -hydroiodide, which gave very similar Weissenberg photographs, were found to be the most suitable for the X-ray analysis. It was hoped to be able to use the isomorphous-replacement technique as well as the heavy-atom technique for phase determination. The crystals were grown from methanol solutions. It turned out to be very difficult to grow monoclinic crystals. Often during long periods only triclinic crystals were obtained. The monoclinic crystals were unstable and became triclinic under investigation in the course of a few days. The crystal data of the three salts are collected in Table 1.

Table 1. Cell dimensions of the halogen salts of samandarine

	Density g.cm. ⁻³	a (Å)	ь (Å)	с (Å)	β (°)
Samandarine-HCl	1.25	12.83	6.15	12.47	93
Samandarine-HBr	1.36	12.98	6.28	12.43	95
Samandarine-HJ	1.48	13.10	6.50	12.53	97

From cell dimensions and densities one crystalmethanol per samandarine molecule was deduced, which was later confirmed by the chemical analysis of single crystals. The Laue symmetry was found to be 2/m and the space group $P2_1$ was chosen. There are 2 molecules with 2 methanols within the unit cell.

Intensity measurements

In order to have data available for the application of the isomorphous-replacement and the heavy-atom technique for phase determination, X-ray intensity measurements were made on the three salts. For the two-dimensional analysis a first set of structure factors was obtained from equi-inclination Weissenberg photographs using filtered Cu-radiation and the multiple-film technique. The intensities were visually estimated. No correction was made for absorption.

For the 3-dimensional analysis it seemed to be desirable to increase the accuracy of the measured intensities. A new set of integrated equi-inclination Weissenberg photographs was taken for the hydrobromide. Approximately 1400 reflections were obtained from the zero, first, second, and third layer lines. For each photograph a time-calibrated intensity scale was made. The peak intensities were measured using a photometer.

For the intensity measurements a needle-shaped crystal of hydrobromide was used with a=0.11 mm. and c=0.16 mm. The absorption ($\mu=30.9$ cm.⁻¹) was calculated using a graphical method, but it was later found not to be necessary to correct for absorption. The new set of three-dimensional data was used for the three-dimensional Fourier synthesis of the hydrobromide.

The two-dimensional analysis

The halogen atom parameters for the three salts were

Fig. 2(a), (b), (c). Pattersonsynthesis P(u, w) (a) samandarine-hydrochloride, (b) samandarine-hydrobromide, and (c) samandarine-hydroiodide.

Fig. 3. The first bromine-phased Fourier-projection $\varrho(x, z)$.

determined from Patterson projections which are shown in Fig. 2(a), (b), (c). It can be seen that the halogen-halogen maximum is clearly recognizable, especially in the projection of the hydroiodide. From this projection the x- and z-parameters of the heavy atoms could be derived. Two centrosymmetric Fourierprojections were calculated along the 2_1 -axis for the hydrobromide and for the hydroiodide using the signs (1) as derived from the position of the heavy atoms alone and (2) as determined by isomorphous-replacement. It was found that (1) gave better results. 19 maxima could be located in the bromine-phased and the iodine-phased Fourier projections; the former is shown in Fig. 3. After a few trials, it was possible to locate with these positions the ring system \hat{A}, B, C , and D in agreement with the conceptions of the organic chemists.

The halogen salts of the samandarine are isotypic. The electron-density projections $\rho(x,z)$ of samandarine-hydroiodide is similar to the one of S-HBr with nearly the same atomic positions. After several cycles the reliability factor of the h0l zone reached $R_1=0.17$ for the samandarine-hydroiodide.

For further investigations the samandarine-hydrobromide was chosen. A new set of h0l structure factors was computed, using the Br-position and the parameters of the 19 maxima. The agreement between the observed and calculated structure factors was promising. A second projection showed the position of all atoms, even those of methanol.

Fig. 4. The final Fourier-projection $\varrho(x, z)$ of samandarine-hydrobromide.

At this stage of the analysis, different atomic scattering factors for the C, N and O atoms were introduced and a Debye–Waller-temperature factor B=3.0 for all atoms was chosen to calculate a new set of structure factors. After several cycles, which were calculated in fraction of 1/100, the x- and z-parameters of all atoms were refined. Several difference projections were calculated, which, however, did not lead to any noticeable improvement. Finally no further improvement of agreement between calculated and observed structure factors could be reached. The reliability factor for the h0l reflections was 0.28. Fig. 4 shows the last electron-density projection of the asymmetric unit of samandarine-hydrobromide.

The three-dimensional analysis

From the refined x- and z-parameters and the assumed average C-C-distance of 1.50 Å, a three-dimensional

model of the samandarine-molecule was constructed. Because of the uncertainty of the linkage between the molecule and the Br-ion, the latter was shifted towards the molecule, until the best agreement between the calculated and the observed structure factors was reached. Having found the optimal position of Br⁻, the phases of all structure factors were calculated. The position of the methanol was not yet known and therefore not considered in these calculations. The agreement between observed and calculated *hkl* structure factors was promising with $R_1=0.30$.

Using the phases from these structure factors, a three-dimensional Fourier synthesis was calculated. This synthesis confirmed the chosen position of the atoms, refining them somewhat in respect to their y-parameters. Also the methanol could be located. For the new set of calculated structure factors, the refined atomic positions including methanol were used. The agreement factor dropped to $R_1=0.26$.

In the meantime the new set of observed structure factors became available. With these values as coefficients and the improved phases, a second threedimensional Fourier synthesis in fractions of 1/50 was computed, which further refined the *y*-parameters. For a refinement of *x*- and *z*-parameters, a Fourier projection in fractions of 1/100 was calculated. The result of the second three dimensional synthesis in sections with respect to the *b*-axis is shown in Fig. 5.

Fig. 5. The Fourier-synthesis in section along [010] due to the three-dimensional Fourier-synthesis.

With the final atomic parameters about 1400 structure factors were calculated. The agreement factor reached 0.25 including unobserved reflections.

STRUCTURE OF SAMANDARINE-HYDROBROMIDE

Table 2. Measured and calculated values of the three dimensional structure factors of samandarine-hydrobromide The calculated structure factors are taken from the last least-squares cycle

has	1 1 bón -	_	h11	h110	n17	h 2 0	h20			
1 26,0 33,9 2 51,8 30,1 3 50,3 43.5	4 18,2 16,3 5 18,9 18,1 6 21,7 21,5	7 42.8 58.9	1 74,4 76,5 2 86,8 82,9 3 63,6 64,3	1 12.7 14.6 2 15.7 20.8	1 12,4 13,8 2 45,7 46,2 3 41,9 45,8	9 11,4 11,5 no 18,5 12,5 n1 8,5 7,8	2 2 7 3 0 2 2 3 3 0 2 2 5 3 50 0	1 28,0 26,6 2 13,3 15,7 3 9,6 6,7	10 12,3 8,1 11 1,9 3,9	1 27,7 20,9 2 20,3 23,6
4 59,1 49,6 5 39,5 55,5 6 11,0 8,4	$\begin{bmatrix} 7 & 17, 2 & 15, 8 \\ 8 & - & 0, 7 \\ 9 & - & 2, 2 \end{bmatrix}$	10 15 5 11 2 11 24 4 50 3 12 9 8 5 7	5 56.4 49.4 6 69.5 72.0 7 36.9 40.0	4 16,9 14,9 5 8,9 9,3	5 53.0 31.3 6 15.5 20.2	13 5.8 4.7 14 1.6 2.7 15 3.8 1.7	5 11,2 11,7 6 10,9 11,4	4 9.8 8.9 5 12.4 14.2 6 7.4 8.0	13 - 2,6	4 17,5 11,0 5 5,2 0,1 6 14,1 12,2
7 18,6 21,3 8 25,4 18,7 9 - 0,7	10 11,4 9,6 11 12,0 8,0 ho9	13 25,4 21,4 hob 1 14,3 17,0	8 28.8 51.8 9 51.2 58.6 10 2.7 2.8	7 19,1 16,6	6 14.9 15.9 9 12.7 12.8 10 2.8 6.1	h21 0 47.4 47.7	8 2,6 2,4 9 4,9 4,9	7 25.0 28.2 8 6.2 7.8 9 17.8 17.8	0 28.0 27.1	7 7,1 9,1 8 4,4 3,7 9 9,0 9,2
10 22,8 25,1 11 9,8 6,8 12 9,9 4,0	0 12.7 11.1 1 15.7 15.5 2 16.0 18.5	2 20,0 14,7 5 7,0 6,8 4 17,0 16,5	11 15,4 16,3 12 6,2 8,7 15 2,6 4,8	10 3,2 4,9 h111 0 17.9 20.9	11 11,7 12,6 18 2,7 5,4 13 7,9 10,5	1 78,2 55,5 2 48,7 45,2 3 43,7 39,7	0 6,2 8,1 1 3,9 2,9 2 3,5 13,4	11 5,7 4,6 12 7,8 7,7 13 6,4 6,1	2 23,8 22,6 3 9,5 11,1 4 7,5 5,6	10 7.9 8.5 11 7.9 8.4 12 6.1 6.8
14 10,9 5,7 15 - 1.0 16 15,0 7,7	5 14,9 15,9 4 18,0 13,5 5 18,4 18,6	5 30,1 25,6 6 32,2 30,9 7 32,2 26,6	14 5,8 4,6 15 - 1,5 16 8,0 6,4	1 17,2 18,1 2 17,7 14,3 5 15,8 13,9	14 2,1 3,4 h17 1 40,7 36,5	5 - 3.6 6 25,2 12,7 7 3.6 2.7	$ \begin{array}{r} 5 1,9 \\ 4 1,9 \\ 5 \\ 5 \\ 7 \\ 7,5 \end{array} $	14 5,6 4,7 h28 1 20,1 22,	7 5.4 6.5	14 4.8 3.1 15 8.0 6.8
bot 0 43,5 58,0 1 56,4 59,6	6 15,7 18,5 7 7.0 6,8 8 6,9 7,5	9 22,2 18,1 10 18,7 18,3 11 9,9 14,4	h12 0 54,1 54,2 1 55,6 50,1 2 61,5 62,9	4 10,7 7,5 5 - 2,1 6 5,8 6,0	2 56,7 45,8 5 51,1 46,1 4 50,5 46,5 5 46,1 44,5	8 9,2 8,5 9 14,9 12,8 10 17,4 14,7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 20,5 22, 5 14,5 19, 4 14,8 12,	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1 49,3 46,2 2 35,9 25,7 3 40,6 35,6
2 16,0 17,0 5 4,5 2,4 4 47,5 40,4	10 6,0 7,5 h0-10	12 25,6 21,6 13 16,8 15,5 bo7	3 48,7 50,4 4 34,9 33,5 5 38,0 56,1	8 2,8 2,4 h112	6 32,7 29,5 7 21,1 19,8 8 15,4 15,6	11 14,8 4,1 12 6,1 6,8 15 3,6 5,4 14 2,2 3,5	10 2,9 5,5	5 10,7 11, 6 13,4 14, 7 7,9 6, 8 7,9 9,	9 11 1,7 1,2 B U 2,5 4,4 14 9,1 7,2	4 38.8 35.3 5 17.7 21.6 6 21.3 19.7
5 56,5 33,4 6 19,8 8,3 7 17,0 14,2 8 25,7 19,7		1 57,8 25,7 2 - 0,0 3 35,2 14,9	6 45,0 55,9 7 21,5 51,5 8 52,5 51,5	1 2,7 5,2 2 1,9 4,1 3 7,5 6,1	9 16,6 13,0 10 16,9 14,3 11 13,8 11,4	h22 0 10,8 13,7	1 6,2 8,8 2 - 4,3 3 19,4 18,5	9 11,1 12, 10 4,3 4, 11 1, 1,	6 0 7,8 5,8 2 1 5,0 5,8	7 10,2 11,3 8 8,7 15,7 9 9,0 9,1
9 25,1 21,5 10 14,5 15,2 11 9,8 9,1	4 1 1.7	5 11.8 7.4 6 11.3 9.0 7 6.5 6.6	10 12 2 12 3 11 2 8 5,5 12 5 6 6,0	4 3.7 4.1 5 2.5 5.2 6 1.6 3.9	13 12.4 7.2 14 5.5 5.6 15 5.2 7.1	1 25,4 18,5 2 30,7 26,0 3 13,1 11,1	4 4,5 6,9 5 11,7 11,9 6 7,9 7,5	12 9.0 7. h23	5 6,5 5,2 4 16,6 18,6 5 16,4 23,0	11 5.6 7.4 12 - 1.1 13 - 1.6
12 - 0,6 13 9,6 7,5 14 10,7 8,5 15 - 0,5	7 11;8 · ł 13,7 ho11	8 18,7 13,7 9 20,1 17,0 10 19,4 15,5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 5.0 1.7 9 5.9 7.9	h18 1 25,3 21,7 2 12,7 11,1	5 56.6 41.7 6 20.4 21.9 7 25.9 24.0	0 12,4 12,1 1 9,5 10,9 2 5,9 7,9	2 10,7 9,8 3 13,2 18,2 4 20,5 24,8	6 19,6 19,8 7 12,6 13,8 8 6,5 7,6	15 5.0 5.8 h35
16 15,5 7.5 ho2	0 - 0,3	12 21,5 25,9 3 2,5 5,6	0 84,9 93,8 1 69,1 62,0 2 38,5 33,5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 52,5 51,4 4 14,2 14,9 5 16,9 16,4 6 23,0 20,5	8 12,4 12,9 9 23,9 26,6 10 27,2 27,8	3 11,5 10,5 4 7,8 7,9 5 11,8 11,1	5 23,5 24,1 6 8,9 6,5 7 26,3 28,6	10 10.1 10.1 11 11.1 7.7 12 - 3.7	1 52.4 28.2 2 53.9 29.6 3 49.4 44.9 4 53.4 59.2
0 75,1 89,6 1 62,7 56,0 2 19,8 17,1	4 - 8,0 5 16,8 18,6 6 11,5 13,8	15 11,2 9,7 ho8 1 54,2 51,1	5 31,5 29,4 4 4,4 7,0 5 16,2 21,8	3 5,9 6,3 4 - 1,2 5 3,0 3,8	7 17,9 14,3 8 24,2 25,0 9 15,9 7,7	12 10.6 10.2 13 14.1 10.6 14 3.1 3.8	7 3,1 5,7 h213	9 15 2 15 3	13 3.0 4.6 14 6.7 5.1 h35	5 34,6 33,1 6 12,7 13,8 7 26,9 25,9
4 36,0 29,2 5 21,2 20,9 6 3,1 1,1	7 8,9 .4,1 8 18,5 20,0 ho12	2 16,9 22,0 3 51,5 24,0 4 - 4,7	6 9,8 11,6 7 5,1 5,5 8 12,4 10,5	5,9 7 5,9 8,2 h114	10 22,3 15,6 11 28,7 25,9 12 2,4 1,3 15 16 9 15 2	h5 14,1 8,7 h23	1 5.4 7.5 2 4.7 7.1 3 1.6 5.8	12 12,7 7,6 h213	0 18,5 11,7 1 21,1 17,0 2 26,4 21,9	8 20,8 22,2 9 16,5 15,9 10 15,3 16,7 11 4,6 5,6
7 24,1 24,5 8 37,4 27,8 9 6,3 1,9	0 - 6.5 1 - 8.5 2 16,9 16,7	6 18,9 13,3 7 28,6 24,2 8 17,7 17,1	10 16,4 11,6 11 12,6 8,8 12 10,7 8,0	C - 3,0 1 7,0 6,9 2 5,2 6,5	14 9.7 9.0 h19 1 8.1 11.0	2 53.0 46.7 5 45.5 45.5	4 5,8 6,2 h2T 1 58,5 61,5	1 7,9 8,3 2 6,2 7,0 3 15,8 18,7	4 14,8 16,5 5 28,0 33,1 6 14,0 14,2	12 10,6 8,6 15 7,6 6,9 14 1,4 2,4
11 9,9 6,5 12 12,1 9,5 13 15,0 14,1	4 16,2 15,8 5 14,2 13,7 6 - 6,1	ho9 1 9,0 5,5 2 67,7 60,1	13 8,5 3,9: 14 2,2 3,6' 15 2,8 5,5 16 0,8 9,4	4 - 3,6 5 2,6 4,2 6 4,2 6,3	2 9.5 12.8 3 2.6 6.2 4 3.7 6.2	4 37,3 41,5 5 37,1 34,1 6 8,4 27,8	2 59.0 32.9 3 30.8 25.6 4 22.2 20.5	5 17.8 16.2 6 13.7 13.2 7 17.5 18.5	7 12.0 13.1 8 7.9 7. 9 15.2 16.5	h37 1 15.2 7.8 2 10.1 15.8
14 17,1 13,9 15 11,3 9,0 16 7,0 3,4	7 — 1,0 8 12,0 12,3 ho13	3 9,1 5,6 4 18,9 12,8 5 25,4 21,5	h14 0 23,3 24,1 1 26,4 27,4	h115 0 5,6 6,3 1 3,4 5,5	6 - 4.7 7 22.5 22.8 8 12.4 16.6	B 17,9 22,3 9 13,3 16,2 10 15,8 10,0	5 42,7 44,7 6 42,5 59,1 7 55,1 54,6 8 27,9 29,5	8 15,2 13,1 9 10,2 8,4 10 9,5 8,9 11 17,9 10,2	11 5.9 6. 12 3.7 4. 13 2.7 3.	5 12,7 17,7 4 18,3 18,7 5 21,0 25,1
ho3 0 75.5 63.4	0 18,6 17,6	6 24,8 25,9 7 27,4 25,2 8 9,9 9,2 9 20,1 16,5	2 26,8 23,8 3 12,4 11,7 4 11,2 10,1	2 3,8 4,7 3 2,2 4,2	9 10,0 10,3 10 8,5 10,1 11 11,3 11,6	11 19.8 16.8 12 17.1 11.3 13 9.9 7.7	9 28,7 28,5 0 22,0 21,9 11 17,8 21,3	12 9,2 6,4 h2TT 1 1,9 4,8	0 15,9 21, 1 27,6 29,1	6 14,9 16,1 7 27,4 28,8 8 7,7 9,0 9 15,2 13,9
1 29,6 54,8 2 51,5 26,8 3 59,8 42,8 4 42,7 50,5	4 11,8 9,6 hoT	10 16,6 11,6 11 - 1,2 12 11,6 11,3	6 17,9 22,2 7 28,3 29,5 8 10,3 26,1	h1T 1 47,8 43,4 2 49,5 47,1	13 9,2 8,5 14 9,0 7,4	15 6,0 6,2 0 44,2 37,6	12 12,4 13,6 13 7,2 5,1 14 1,6 2,6 15 7,5 6,8	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5 24,0 27,8 4 11,4 12,1 5 22,6 24,4	10 15,9 15,2 11 18,2 14,7 12 10,5 10,2
5 32,9 30,6 6 39,4 40,0 7 13,6 17,2	1 14,2 18,2 2 13,0 18,8 3 49,0 55,1 4 51 2 67,7	hoTO	9 21,5 24,0 10 14,0 12,2 11 2,8 8,4 12 6 10 9	3 58,5 57,8 4 35,5 51,2 5 44,0 37,0 6 29,9 32,7	h110 1 35,3 38,8 2 1,2 3 24 9 26 6	1 51,2 48,0 2 56,7 51,7 3 58,6 59,3	h27 1 11,8 13,6 2 17,2 10,9	6 8,6 8,5 7 2,6 3,3 8 2,1	6 14,3 20,0 7 11,2 13,1 8 7,9 9,1	14 10,3 6,9 15 9,9 5,5
9 13,1 13,1 10 26,0 28,5 11 21,2 18,6	5 19,5 19,9 6 33,0 43,1 7 28,5 29,5	4 9,8 8,8 5 40,7 36,4 6 41,2 28,1	15 2,4 7,4 14 - 2,5 15 2,5 4,4	7 5,5 6,2 8 5,6 6,9 9 5,0 6,9	4 15,7 16,8 5 13,0 16,3 6 13,0 14,1	5 14,9 21,8 6 21,3 23,3 7 14,5 18,2	3 18,8 18,6 4 51,4 52,9 5 50,7 50,8	9 7.4 6.8 10 5.7 6.0 11 9.9 7.5	10 3,8 5,1 11 2,7 4,1 h37	1 4,6 3,9 2 10,7 6,0 3 9,4 10,3
12 12,0 9,7 15 11,5 9,0 14 12,9 12,2	8 46.0 40.0 9 38.2 36.4 10 23.9 22.6 11 16.0 14.2	7 - 0,5 8 15,6 13,1 9 13,5 12,1	h15 0 57,1 52,7 1 41,5 44,8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 16,8 22,3 9 7,6 9,4 10 1,3	55,0 54,8 7 55,8 29,1 8 15,7 15,5 9 24,7 24,1	h212 1 10,5 10,7 6,0 7,2 3 9,5 8,7	0 12,1 12,0 1 15,5 11, 2 15,8 11, 5 17,2 14,	4 7,9 8,3 5 4,1 5,9 6 12,1 14,4
ho4 0 64,8 50,5	12 12,2 16,6 15 11,9 13,1 14 8,9 10,1	11 11.8 13.8 12 7.3 7.8 13 9.4 7.7	2 21,8 26,8 3 32,1 36,1 4 24,6 28,6 5 36,9 34,9	14 12,4 12,7 15 4,7 6,3 16 3,5 3,3	11 3,2 5,4 12 8,4 7,9 h1TT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 17,4 16,6 11 26,4 26,8 2 12,4 10,3	4 15,7 16,2 5 1,8 3,3 6 3,0 5,4	4 16.4 14. 5 <u>-</u> 6 6 1.9 6	8 7.8 6.0 9 10.5 9.7 10 - 5.3
1 12,0 18,7 2 50,7 59,5 3 54,5 58,0 4 50,1 51,1	16 8.4 7.7 ho2	1 14.0 holl 2 21.6 20.5	6 34,5 34,9 7 26,2 28,4 8 31,4 29,6	h12 1 56,0 56,1 2 75,4 79,0	1 14,8 18,6 2 17,5 21,5 5 18,4 22,1	h25 0 42,7 44.7 1 11,3 11,6	4 4 6 6 0 5 9 6 9 0 b25	h213 14,1 11,1 2 2,4 3,1 1 12 2 11	8 7,9 5. 9 5,9 5. 10 2,8 3.	11 17,8 12,1 12 5,8 5,0 15 8,1 5,4
5 40,6 39,5 6 29,6 27,2 7 12,8 15,2	1 7,6 8,1 2 40,3 37,6 3 17,4 17,8	4 8,3 8,5 5 8,5 10,0 6 9,9 6,7	9 0,0 9,0 10 19,9 17,0 11 — 10,1 12 4,1 5,4	4 32,7 34,1 5 60,4 58,0 6 44,4 40,0	4 18,4 19,5 5 15,9 15,0 6 5,5 7,7	5 28,1 27,5 4 18,8 26,1 5 22,3 17,0	1 32,2 28,5 2 57,5 51,6 3 10,2 15,1	4 9,2 7.1 5 10,3 8. 6 3,8 4.	h38	h35 1 13.6 18.1 2 15.0 15.6
9 16,5 14,9 10 4,4 4,1 11 22,3 17,5	5 23,9 25,5 6 31,0 51,1 7 25,3 30,8	7 2,1 8 7,8 5,9 9 2,3 10 16,5 15,8	13 2,3 6,9 h16 0 42,7 41,6	8 18,7 17,1 9 2,5 3,5 10 11,2 12,6	9 10,4 8,1 10 7,2 7,5	6 10,0 8,6 7 5,9 8,4 8 10,9 10,2	5 2.5 0.8 6 3.5 2.5 7 4.4 6.2	7 7.9 7. 8 7.9 8.1 9 5.4 5.	2 8,5 6,6 5 5 16,0 9,5 4 6,6 4,4	5 19,1 19,6 4 28,4 27,7 5 18,2 17,0
ho5 0 47,5 42,1	8 45,2 38,7 9 15,1 14,6 10 22,8 26,1	11 9,0 5,9 12 8,6 5,4	29,4 29,9 232,4 31,2 325,4 29,6 4 32,7 33,1	11 12,5 13,0 12 3,4 8,9 13 - 2,5	11 - 3,5 12 3,5 4,6 h112	10 <u>-</u> 3.7 11 6.6 7.3 12 9.6 6.3	8 15,9 19,3 9 10,6 12,8 0 15,7 21,8	1 - 2,9 2 4,7 5,4 3 15,6 13,5	5 7,4 6,4 6 8,0 9,1 7 3,2 5,6	7 26,8 23,6 8 4,6 4,0 9 - 2,8
1 47,5 46,9 2 45,3 58,6 3 12,6 14,7 4 10,1 6,1	12 31.6 30.3 13 11.8 12.3 14 - 0.6	1 15,6 13,7 2 14,0 12,1 3 13,9 10,7	5 54,5 34,7 6 19,5 22,1 7 15,2 16,2	15 — 5.6 16 2.5 2.9	1 1,9 5,3 2 17,5 19,5 3 9,8 12,4	13 4,8 3,5 126 1 0 36,7 21,5	2 8,7 8,1 5 7,1 8,6 4 5,1 6,7	4 7.0 6.0 5 7.5 6.2 6 13.0 10.3	9 2,3 4, 10 2,5 4, 11 2,7 4,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5 <u>11.6</u> 1.0 6 11.6 6.6 7 <u>0.5</u>	15 9.4 9.9 16 16.5 15.8 ho3	4 - 3,9 5 5,2 6,2 6 11,5 7,9	8 19,0 20,8 9 12,6 12,1 10 8,8 10,2 11 6,0 4,2	1 47.5 46.0 2 76.1 74.3 3 59.0 67.7	4 9.7 11.4 5 8.5 7.2 6 4.1 5.6	1 15 1 10 5 1 2 5 5 4 9 3 5 2 6 2	5 5,1 5,3 1 100,7 94,7	1 15,6 16,5	h39 0 5,7 6,2	14 3,2 0,3 h37
$\begin{array}{c} 9 & \frac{2 \cdot 1}{2} & \frac{4 \cdot 5}{2 \cdot 2} \\ 10 & 12 \cdot 2 & 13 \cdot 6 \\ 11 & - & 0 \cdot 2 \end{array}$	1 66,6 72,2 2 18,5 15,3	ho13 1 9,5 8,5 2 9,5 7,7	12 - 2,3 13 2,1 2,4 h17	4 66.0 65.2 5 48.7 51.6 6 46.5 47.4	8 14.3 11.3 9 9.2 8.1 10 6.1 4.7	4 4,8 4,8 5 5,0 5,6 6 7,4 12,1 7 10,9 12,5	70,4 59,7 5 24,4 27,9 4 19,8 20,2 5 40,8 29,2	2 19,4 17,6 3 26,2 24,1 4 40,0 24,1 5 11,1 12,2	1 5,2 5,1 2 2,6 4,5 3 5,7 5,9 4 9,9 9,1	1 30,0 34,5 2 16,4 24,1 3 25,9 25,0 4 22,7 21,5
12 — 1,1 13 13,3 11,2 14 13,2 9,9	4 - 3.5 5 4.5 4.8 6 15.0 11.2	4 6,4 5,7 5 14,0 12,7 6 14,7 10,7	0 33,5 30,5 1 21,9 25,1 2 13,9 20,3	8 41,0 35,4 9 51,0 31,0 10 19,8 23,1	$1 - h^{113} 4.3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 38.8 26.8 7 16.9 16.4 8 5.8 9.3	6 13,6 10,6 7 16,1 16,0 8 16,9 17,0	5 9.0 9.0 6 10.1 11,2 7 6.1 11.1	5 18,9 21,6 6 18,7 21,1 7 19,6 16,4
0 15.5 15.4	7 19,3 17,8 8 - 4,5 9 - 4,8 10 11,6 11,4	9 - 4.1 10 7.7 10.7	4 13,8 16,1 5 5,7 7,0 6 1,8 4,0	12 9,9 12,8 13 8,5 9,7 14 12,2 12,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 9.7 9.1 1 13 8.7 7.C 1 h27 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 9.2 9. 11 11.6 8. 12 10.1 7.	h310 0 9,1 7,4 1 7,3 7,1	9 6.5 5.9 10 7.0 4.5 11 8.2 6.6
4 14,6 10,2 5 8,2 9,4	1 24.0 27.2 12 12.2 11.3 13 11.8 11.0	1 - ho14 1 - 3.7 2 9.4 6.1	7 9,7 7,8 8 10,9 9,6 9 12,6 10,1 10 8,6 5,7	15 2,0 3,3 h1X 1 15,5 13,7	7 4.4 2.9 8 6.4 4.4 9 6.3 6.0	0 25,1 23,6 ¹ 1 11,5 16,1 2 22,6 29,1 5 25,2 26,6	1 70.5 79.0	15 9,6 7,3 14 9,8 7, 15 5,2 4,	2 11.4 12.5 3 3 2.9 4.5 7 4 9.0 10.4 5 4.4 7.2	h38 14.9 18.9 2 16.2 21.7
6 6.2 5.7 7 6.5 6.3 0 15.3 13.4	15 10,7 10,2 16 9,1 0,4	$\frac{3}{2}$ $\frac{9}{1}$ $\frac{2}{1}$ $\frac{5}{1}$ $\frac{9}{1}$ $\frac{9}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}$	11 8,0 3,7 h18	2 65.2 59.8 3 33.6 28.8 4 24.0 22.0	h174	4 19,1 26,2 9 10,6 18,5 6 10,9 12,3	5 24,9 29,7 4 37,2 36,6	0 42.7 53.1 1 51,9 20,7	6 2,9 4,8 7 2,7 4,5 8 3,5 5,1	5 10.9 8,9 4 6,5 4,1 5 11,2 12,5
10 14,0 13,9 11 - 8,2 12 6,5 7,5	ho4	7 9.3 6.7 8 9.5 8.3 9 8.2 9.4	1 11,2 10,1 2 2,4 3,7 3 8,0 11,1	6 25,7 25,2 7 30,8 25,6 8 34,2 30,1	2 8,5 12,4 3 8,2 11,2 4 5,5 7,9	7 15,7 20,0 8 15,0 12,6 9 17,4 21,9	6 31,5 29,1 7 10,1 8,6 9 35,2 28,9	3 37.5 31.2 4 47.4 35.5 5 18,0 28,8	9 2.8 5.5 10 4.1 5.5 h311	6 17,8 15,2 7 5,3 3,9 8 9,0 9,1 9 11,6 11,5
15 9,5 7,5 14 9,0 6,8 ho7	3 80,4 68,6 4 54,1 48,6 5 43,4 36,6	h10 1 21,1 17,8 2 73,2 71,4	4 9,2 10,9 5 15,4 15,6 6 12,4 14,2 7 8,9 11,4	9 31,2 26,3 10 28,4 29,2 11 $-$ 4,6 12 16,5 14,3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 6,6 8,4 1 12 - 5,3 1 13 5,2 7,3 1	9 15.6 15.5 0 17.8 17.8 1 15.8 16.1 2 10.7 11.8	6 51,5 32,8 7 32,1 32,1 8 19,1 18,6 9 11,1 11,1	0 5.8 5.5 1 10,0 9,5 2 9,4 10,4	10 9.3 8.9 11 11.7 9.5 12 9.5 8.5
0 19,8 21,1 1 31,3 29,8 2 29,9 29,8 3 19,6 29,8	7 7,9 6,9 8 13,5 12,7 9 - 1,0	5 31,9 28,2 4 4C,6 41,2 5 70,5 63,8 6 35,4 56,4	8 10,9 10,2 9 4,5 2,8 10 9,1 7,6	13 16.8 15.5 14 14.6 11.3 15 11.9 9.4	h115 1 4,0 7,0 2 8,4 10,7	h24,7 29,0 1 26,9 32.7	3 1.7 3.9	10 9.2 9.4 11 6.4 6.0 12 5.3 4.4	4 4.2 7.0 5 1.7 2.8 h312	h39 1 9,3 8,7
4 10,3 15,2 5 16,6 17,2 6 23,7 22,9	10 - 4,1 11 10,0 12,5 12 - 0,7 15 - 4.8	7 51,4 28,4 8 15,9 19,8 9 12,4 16,6	h19 9 11,9 15,3	ده ۲۰٫۱ ۲۱3٫2 ۱3٫۵	5 2,7 5,0 4 8,8 10,4 5 9 6,9	2 23,1 50,1 3 18,2 24,1 4 15,2 24,5	8,6 3,7 13,8 2,4 16,7 12,9 27,7 25,8	12 7:3 8:1 h32	0 2,9 3,9 1 5,8 3,6 2 3,9 0,9	3 1.9 4.5 4 1.9 2.4 5 4.6 6.0
7 6,8 10,3 8 9,9 17,2 9 14,1 16,1 10 11,9 14	14 - 1,8 15 10,3 · 7,8 ho5	10 50,0 29,4 11 14,6 12,0 12 15,4 15,0 15 18,4 15,4	2 9.5 10.2 5 15.7 14.9 4 11.2 12.1	2 45 5 50 2 3 27 5 31 9 4 15 8 16 5	h2.	7 6.3 8.1 7 8 - 5.2	23,5 21,5 14,2 15,4 51,4 51,6	0 34,7 31,2 1 32,9 25,8 2 23,8 22,9	$0 = \frac{1313}{1.5}$	6 8,0 12,1 7 2,9 2,0 8 2,8 4,7
808. 0 28,0 50,1 1 40,1 52,1	1 30,7 33,8 2 35,8 31,0 3 22,5 23,2 4 24,1 22,0	14 7.8 7.7 15 6.6 8.1 16 4.2 4.0	5 14,7 16,6 6 10,9 11,5 7 9,9 10,2	6 7,1 10,4 7 - 3,5 8 9,0 10,8	69.9 66.8 69.9 66.8 4 4.5 9.4 5 82.0 87.2	9 5,3 4,7 9 10 6,7 6,5 10 11 3,4 3,5 11	28,5 27,5 17,8 20,4 13,4 12,9	27,2 22,3 4 22,9 28,8 5 21,6 27,8 6 27,1 27,6	3 6,1 1,6 4 - 5,6 5 4,9 2,8	10 7.3 7.5 11 6.5 6.3 12 7.1 6.6
2 44,7 40,2 3 21,4 26,4	5 29,8 26,2 6 47,7 38,1	0 74,1 69,9	9 10.0 9.8 10 7.5 6,4	7 6,7 6,6 10 12,9 12,5 11 18,4 18,6	6 10.5 20.7 7 15.8 21.5 8 16.5 17.6 0	n29 11 15,2 18,4 14	10,9 7,0 13,2 12,1 6,5 6,0	7 14,1 17,1 8 7,7 8,9 9 7,9 8,4	·0 2,3 ^{h314} 7,0 1 6,1 5,4	h3T0 1 15,9 18,2 2 16,4 20,2

.

The three-dimensional Fourier syntheses were calculated using the IBM 650. The calculations were made in sections x, 0, z; x, 1/50, z; x, 2/50, z; etc. After having transformed the structure factors by multiplying them with the phase factor of the desired section, the usual program for two-dimensional Fourier series could be used. The routines for preparing the structure factors for the different sections and for the partial summations of the Fourier coefficients were written by S. Göttlicher.

Least-squares refinement

A further refinement of the three-dimensional data was based on the method of least-squares using the least-squares program of Levy & Busing for the IBM 704. For the first two cycles the x, y, z-parameters of all 25 atoms of the asymmetric unit, the scale factors for each layer-line and the overall temperature factor, starting with B=3.0, were varied. The reliability factor dropped then from $R_1 = 0.25$ to $R_1 = 0.19$. The x, y, z-parameters did not change essentially after the second cycle and therefore the individual temperature factors for each atom were varied in the following two cycles. The scale factors and the overall temperature factor were held constant in these cycles. The temperature-factors of the methanol atoms became 7.76 for the C-atom and 10.13 for oxygen whereas the temperature-factors of all the other atoms remained in the range between B=3-4. (See Table 3.)

In the following fifth cycle the temperature-factors of the methanol-atoms were held constant. Since the x, y, z-parameters of the atoms did not show noticeable deviations from those of the previous cycle, they were held constant during the sixth and last cycle in which only the scale-factors were varied.

After the third cycle with $R_1 = 0.18_0$ the R_1 -factor dropped to $R_1 = 0.17_2$ in the fourth cycle, to $R_1 = 0.16_7$ in the fifth cycle and remained constant in the last cycle.

Table 2 shows the complete set of structure factors on the final scale of the last least-squares cycle. The parameters of all atoms in the asymmetric unit, with

Table 3. The final x, y, z-parameters and individual temperature factor of samandarine-hydrobromide

	Atom	x	y	z	Temper ature- factor
Cvcle 1	Br	0.019	0.135	0.119	
Cycle 6		0.019	0.135	0.120	4.67
Cycle 1	Cl	0.789	0.680	0.276	
Cycle 6		0.787	0.699	0.274	3.18
Cycle 1	C2	0.906	0.622	0.275	
Cycle 6		0.907	0.632	0.270	3.18
Cycle 1	C3	0.822	0.718	0.088	
Cycle 6		0.825	0.740	0.098	3.29
Cycle 1	C4	0.752	0.540	0.063	
Cycle 6		0.748	0.539	0.062	3.09
Cycle 1 Cycle 6	C4	$0.752 \\ 0.748$	0·540 0·539	0·063 0·062	3

489

Table 3 (cont.)					
Cycle 1 Cycle 6	C5	$0.724 \\ 0.723$	0·425 0·406	$0.158 \\ 0.156$	3.53
Cycle 1 Cycle 6	C6	$0.637 \\ 0.635$	$0.277 \\ 0.235$	$0.121 \\ 0.122$	2.71
Cycle 1 Cycle 6	C7	$0.525 \\ 0.526$	$0.362 \\ 0.365$	0·100 0·108	3.67
Cycle 1 Cycle 6	C8	0·507 0·507	0·446 0·469	$0.211 \\ 0.215$	2.93
Cycle 1 Cycle 6	C9	$0.589 \\ 0.599$	$0.618 \\ 0.630$	$0.241 \\ 0.245$	2.37
Cycle 1 Cycle 6	C10	0·708 0·705	$0.522 \\ 0.528$	$0.259 \\ 0.256$	2·3 0
Cycle 1 Cycle 6	C11	$0.575 \\ 0.579$	0·779 0·774	$0.339 \\ 0.347$	3.54
Cycle 1 Cycle 6	C12	0·468 0·467	$0.855 \\ 0.878$	$0.329 \\ 0.329$	3.4]
Cycle 1 Cycle 6	C13	$0.384 \\ 0.382$	0·699 0·704	0·313 0·306	3.50
Cycle 1 Cycle 6	C14	0·404 0·408	$0.594 \\ 0.582$	$0.205 \\ 0.202$	2.72
Cycle 1 Cycle 6	C15	0·296 0·308	$0.459 \\ 0.455$	$0.172 \\ 0.168$	3·3 0
Cycle 1 Cycle 6	C16	$0.211 \\ 0.216$	$0.630 \\ 0.597$	0·199 0·199	3 ·29
Cycle 1 Cycle 6	C17	$0.276 \\ 0.277$	$0.817 \\ 0.820$	0·264 0·274	3.68
Cycle 1 Cycle 6	C18	$0.371 \\ 0.377$	$0.548 \\ 0.548$	0·398 0·407	3.02
Cycle 1 Cycle 6	C19	$0.722 \\ 0.718$	$0.372 \\ 0.369$	0·352 0·359	3.36
Cycle 1 Cycle 6	N	0∙938 0∙923	$0.677 \\ 0.665$	0·156 0·150	2.68
Cycle 1 Cycle 6	OH	0·144 0·146	$0.513 \\ 0.501$	$0.258 \\ 0.259$	4.16
Cycle 1 Cycle 6	O x	0·780 0·783	$0.827 \\ 0.846$	$0.178 \\ 0.181$	2.98
Cycle 1 Cycle 6	$\mathbf{O}^{\mathcal{M}}$	$0.112 \\ 0.110$	$0.293 \\ 0.398$	0·471 0·478	10.13
Cycle 1 Cycle 6	\mathbf{C}^{M}	0·048 0·006	$0.111 \\ 0.087$	$\begin{array}{c} 0{\cdot}416\\ 0{\cdot}400 \end{array}$	7.76

 O^{H} refers to the oxygen of the OH-group (C16).

 O^x refers to the oxygen of the ether bridge of the

oxazolidine ring.

01 refers to the oxygen of methanol.

 C^M refers to the carbon of methanol.

which the least-squares refinement was started and the final parameters together with the final individual temperature-factor of each atom are given in Table 3.

The structure of samandarine-hydrobromide is drawn schematically in Fig. 6, showing the bond lengths and bond angles. The values of the bond lengths and bond angles which were calculated from the final parameters are listed in Table 4.

Discussion of structure

The structure analysis confirmed the sterol skeleton

Table 4. Bond lengths and bond angles of samandarine-hydrobromide

d		Angle
1·61 Å	$C_1 - C_2 - N$	91°
1.55	$C_{n}^{1} - N_{n}^{2} - C_{n}$	107
1.46	$N - C_{2} - C_{4}$	111
1.65	C ₂ -C ₄ -C ₅	113
1.49	$C_{4}^{3} - C_{5}^{4} - C_{10}^{3}$	115
1.50	$C_{r} - C_{10} - C_{1}$	109
1.52	$C_r - C_o - C_r$	108
1.57	$C_{\alpha} - C_{\alpha} - C_{\alpha}$	110
1.59	C_{-} - C_{0} - C_{0}	108
1.54	$C_{0} - C_{0} - C_{10}$	114
1.59	$C_{0} - C_{10} - C_{r}$	110
1.52	$C_{0} - C_{11} - C_{10}$	110
1.60	$C_{11} - C_{10} - C_{10}$	111
1.59	$C_{10} - C_{10} - C_{14}$	108
1.58	$C_{10} - C_{14} - C_{0}$	113
1.56	$C_{13} - C_{2} - C_{2}$	111
1.48	$C_{0}^{14} - C_{0}^{8} - C_{11}^{9}$	120
1.54	$C_{10}-C_{14}-C_{17}$	105
1.56	$C_{14} - C_{15} - C_{16}$	106
1.82	$C_{17} - C_{10} - C_{17}$	105
1.57	$C_{10} - C_{10} - C_{10}$	96
1.60	$C_{10} - C_{10} - C_{14}$	105
1.65	$C_{17} = C_{13} = C_{14}$	113
1.36	$C_{17} - C_{10} - C_{00}$	110
	d 1.61 Å 1.55 1.46 1.65 1.49 1.50 1.52 1.57 1.59 1.54 1.59 1.52 1.60 1.59 1.58 1.56 1.48 1.56 1.48 1.56 1.48 1.56 1.48 1.56 1.48 1.56 1.65 1.60 1.52 1.57 1.60 1.52 1.57 1.60 1.52 1.54 1.55 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.59 1.58 1.56 1.58 1.56 1.58 1.56 1.58 1.56 1.58 1.56 1.58 1.56 1.56 1.56 1.58 1.56 1.56 1.58 1.56 1.56 1.56 1.58 1.56 1.56 1.56 1.58 1.56 1.58 1.56 1.58 1.56 1.56 1.58 1.58 1.56 1.58 1.58 1.56 1.58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

of the molecule of samandarine and the oxazolidinering system as derived by chemical methods (Fig. 6).

From the atomic parameters the junctions of the rings to each other and the configuration of the ring system can be deduced. Using the nomenclature of the steroids, it can be shown from Fig. 7 that the junction between the rings B and C is 'trans' as in all steroids, whereas the junction between the rings A and B is 'cis' and the junctions between rings C and D is 'trans' again. Therefore samandarine can be related to 5β -androstane, which has the same cis-trans-trans junction between the four rings. As shown in Fig. 8, both rings B and C have the usual chair confirmation.

The connection of the molecules to each other is

Fig. 6. The structure of samandarine-hydrobromide showing bond length and bond angles.

Junction

Fig. 7. Junction between the rings A-B, B-C, C-D.

Fig. 8. Chairconfiguration of ring B and C.

Fig. 9. Connection of the molecules to each other in the structure of samandarine.

shown in Fig. 9. There is a hydrogen bridge of 3.37 Å between the nitrogen of the oxazolidine ring and Brand another hydrogen bridge of 3.10 Å between Brand the oxygen atom of the ring D of the neighbouring molecule. This shows that the molecules are linked together via hydrogen bridges. The linkage of the methanol to the OH-group is schematically shown in Fig. 9, the O-O distance being 2.89 Å.

Our thanks are due to the 'Deutsche Forschungsgemeinschaft' Bad Godesberg, Germany, for the support of our work. The calculations were made on the IBM 650, which belongs to the 'Institut für praktische Mathematik' of the Technische Hochschule, Darmstadt. We are grateful to Prof. Dr A. Walther, the director of this Institute, for his generous help in connection with our work. We are also indebted to Dr Levy and Dr Busing for supplying us the leastsquare program for the IBM 704. Without the assistance of Miss G. Arnt, Miss U. Fischer, Dipl. Chem. S. Göttlicher and Dr G. Habermehl this work would not have been accomplished so quickly. We gratefully acknowledge their continuous interest.

References

- SCHÖPF, C., BLÖDORN, H.-K., KLEIN, D. & SEITZ, G. (1950). Chem. Ber. 83, 372.
- SCHÖPF, C. & BRAUN, W. (1934). Liebigs. Ann. Chem. 514, 69.

SCHÖPF, C. & KLEIN, D. (1954). Chem. Ber. II, 1638.

Wölfel, E., Schöpf, C., Weitz, G. & Habermehl, G. (1961). Chem. Ber. 94, 2361.

Acta Cryst. (1962). 15, 491

A Reinvestigation of the Crystal Structure of Thortveitite Sc₂Si₂O₇

BY D. W. J. CRUICKSHANK, H. LYNTON* AND (IN PART) G. A. BARCLAY[†] School of Chemistry, The University, Leeds 2, England

(Received 28 June 1961)

With 252 $F_o(hkl)$, least-squares solutions for the structure of Sc₂Si₂O₇ have been found in each of the space groups Cm, C2 and C2/m. After discussion, the correct space group is concluded to be C2/m and the Si–O–Si angle is therefore 180° [in agreement with Zachariasen (1930)]. The Si–O distances are all close to 1.62 Å; the Sc–O distances average 2.13 Å.

1. Introduction

Following some preliminary work by Gossner & Mussgnug (1929), the crystal structure of thortveitite, $Sc_2Si_2O_7$, was investigated by Zachariasen (1930), who derived a structure in the space group C2/m with a linear Si-O-Si link in the Si₂O₇ pyrosilicate group. Barclay, Cox & Lynton (1956) called attention to the wide range from 131° to 180° in the reported Si-O-Si angles for the pyrosilicate groups in various minerals and suggested that reinvestigations were needed, particularly of those structures in which 180° angles had

^{*} Present address: Gillette Research Laboratories, Basingstoke Road, Reading, Berks.

[†] Present address: School of Chemistry, University of New South Wales, Broadway, Sydney, Australia.